Качер бровина с самозапиткой схема настройка. Что такое качер (Бровина), его возможности, способы применения

В 1987 г., разрабатывая компас по схеме классического блокинг-генератора, автор обнаружил физическое явление нигде не описанное. При наличии ферромагнитного сердечника в трансформаторе отсутствовал гистерезис, и выходные импульсы напряжения превышали по амплитуде Uпитания в 30 и более раз. Компас работал как феррозонд, и информацию об отношении прибора к пространственным осям XYZ можно было снимать в частоте, которая менялась в 5 раз, и в амплитуде напряжений выходных импульсов, которые меняются в пределах 30%.

Применение такого феррозонда в различных устройствах, как измеритель тока в цепи по окружающему проводник, и любому иному магнитному полю, может быть использовано во множестве приложений.

Автор начал исследовать схемы содержащие индуктивности, отталкиваясь от сердечника, и оказалось, что сердечник вообще не при чем, все так же происходит и без сердечника. Любая схема, состоящая хотя бы из одной индуктивности и транзистора может стать генератором импульсов. Особенность такого генератора в феноменальной передаче энергии в трансформаторной связи при отсутствии сердечника. Во вторичной цепи можно получить десятки вольт, сотни миллиампер от маломощного транзистора и это означает, что получено новое средство автоматизации, которым можно развязать гальванически соединенные цепи. Можно преобразовывать неэлектрические величины метры, градусы, граммы, атмосферы и пр. в вольты амперы герцы.

Одну из схем автор использовал для создания электрического выхода к обычному стрелочному манометру. Оборудовал три манометра и организовал испытания на испытательной станции Газпрома. Это был 1993 г. До 1987 автор работал в центральном аппарате Газпрома, и автора еще помнили, хотя после 1987 г. автор там уже не работал. После командировки в Афганистан по линии Газпрома, у автора были деньги, и автор работал у себя дома только по изобретательской части.

По распоряжению Главка Газпрома были проведены трехсуточные испытания 3-х манометров которые показали, что при +_50 градусах температуры, отклонения показаний электровыхода остаются в пределах класса 1.5, повторяемость измерений идеальная. Есть нелинейности в начале и конце шкалы, это из за того, что все делалось в домашних условиях по геометрии, без нагнетания давления в манометр. Внедрить манометр в Газпром и даже попробовать в боевых условиях не удалось, требовался сертификат на взрывобезопасность, а это тогда делалось на Украине.

Автор запатентовал в 1993 г. полученное устройство как «Датчик Бровина для измерения перемещений» и получил патенты на 7 приложений манометр и прочие датчики. Рассмотрение продолжалось 4 года в разных отделах. Имя автора было присвоено, вопреки закону, как отличительный признак. Получив первый патент «Манометр», безуспешно пробовал внедрить его в других местах Теплосети, ГРЭС, з-д Манометр. Тогда автор совсем не понимал принципа действия устройства. Но приемы и методы получения заданного результата отработал.

Это схема генератора на транзисторе в котором происходит качер процесс. Особенность ее в том, что теоретически он работать не должен, поскольку база закорочена, и отсутствует источник базового тока. Тем не менее он работает при ПОС, ООС, и отсутствии ОС.

(а) Токи базы и эмиттера действуют в противоположных направлениях (уменьшение в базе вызывает увеличение в эмиттере), тогда как обычно увеличение одного должно вызывать увеличение другого.
(б)Отрицательный ток в базе свидетельствует о том, что напряжение на эмиттере выше чем на базе, т.е. >0.7В. В базе всегда присутствует напряжение 0.7В (даже если питание всего каскада 0.2В).
(в) На коллекторе в то же время наблюдается напряжение около 0В, и оба перехода прямо смещены.
(г)Напряжение на коллекторе соответствует состоянию открытого транзистора, хотя по всем признакам транзистор не может быть открыт.
(д)Импульсы напряжения на базе и коллекторе измеренные относительно - и + источника питания имеют одинаковый знак.
(е)Импульсам напряжения в коллекторе и базе по времени не соответствует ток.
(ж)Схема работает в большом диапазоне напряжений питания от 0.2В (на кремниевом транзисторе) до температуры плавления пластмассового корпуса транзистора, от повышения напряжения на источнике питания, и роста тока по закону Ома.
(з)В трансформаторной связи с базовой и коллекторной катушками можно получить напряжение превышающее напряжение источника питания, и ток.
Все (а,б,в,г,д,е,ж,з) закономерности требуют объяснения.
(г)Изначально удалось объяснить почему напряжение на коллекторе около 0В.
Нарастающий ток коллектора (эмиттераI31) создает противоЭДС самоиндукции (U-E=0)направленную навстречу напряжению источника питания. В печатной работе «В.И. Бровин Явление передачи энергии индуктивностей через
магнитные моменты вещества, находящегося в окружающем пространстве, и его применение»была представлена версия природы самоиндукции как затрату энергии источника питания на механический поворот магнитных моментов атомов окружающего индуктивность вещества. В случае разрыва цепи магнитные моменты возвращаются в исходное состояние и воздействуют на проводник, по которому до разрыва шел ток, как движущийся контур с током, возбуждая в нем ЭДС самоиндукции. Нарастание тока вначале при соединении цепи, и при разрыве возбуждает и во вторичных цепях токи и напряжения аналогичные тем, что наблюдались в первичных.
(б,в) Существующее во всех случаях с качерами напряжение в базе порядка0.7Вможно объяснить на следующем опыте связанном с PNпереходом и индуктивностью.

Такая закономерность наблюдается во всех сочетаниях PN перехода и индуктивности.
По окончании импульса на аноде диода наблюдаются напряжение 0.7-0.5Ви ниспадающий ток, завершаемые колебательным процессом,.
В трансформаторной связи в это время знак напряжения меняется на противоположный, а направление тока не меняется.
В момент, когда источники энергии обнуляются наблюдается колебательный процесс схожий с самоиндукцией, которая тоже обнулилась.

На первом этапе (клетки 2,3) диод отпирается, ток нарастает штатно.Импульс обрывается до входа в стационарный режим. Накопившиеся за время импульса носители должны рассосаться, и с резистивной нагрузкой в ключах на это уходят наносекунды. В нашем случае на импульс уходит 10мкS,а на рассасывание 20мкS, и все это времяPN переход остается источником напряжения, несмотря на то, что по окончании импульса знак ЭДСсамоиндукцииPN Объяснение такое. Носители, накопившиеся в базе во время импульса, не в состоянии преодолеть потенциальный барьер самоиндукции заднего фронта. Магнитные моменты здесь не мгновенно разворачиваются в исходное состояние. Происходит снижение концентрации носителей в кристалле, что означает частично переход на нижележащий энергетический уровень.Некоторая часть носителей диффундирует через шунт к 0В.Остальные переходят на нижележащий энергетический уровень, и вместо фотона выделяют другой вид энергии выраженный в Вольтах.
Когда в кристалле не останется свободных носителей, что означает полный разрыв цепи оставшиеся магнитные моменты возвращаются в исходное положение, при этом выделяется теперь слабый импульс ЭДС самоиндукции, который совершает колебания реагируя с барьерной емкостью.
Рассмотрим то же самое, но с транзистором.

В установившемся режиме сложно анализировать процессы происходящие в качере. Это следует делать в переходном процессе от начала действия. В кремниевых транзисторах качер процесс наблюдается начиная от 0.08В, но этого следует добиваться специально. Обычно качер процесс в кремниевых транзисторах начинается с 0.2В. Здесь для наглядности демонстрируется процесс начинающийся с 0.3В. Схема работает от напряжений 0.3В - 0.4В. Генератор прямоугольных импульсов(ГПИ) отпирает базовый переход одиночным импульсом.

На фиг 1 импульс ГПИ повышает Uб до 0.8В. На фиг 2 пока проходил Uи, Uк уменьшилось на 0.1В и после окончания импульса ГПИ(транзистор должен запереться, и Uк стать на уровень Uпит) Uк еще уменьшилось почти до 0В. Uб см. фиг 1 в этом интервале осталось на прежнем уровне. Затем происходит затухающий колебательный процесс. Все эти события происходят при Uпит=0.3В.
Если Uпит увеличить до 0.4В колебательный процесс станет незатухающим фиг 3,4. На шунте наблюдается Iэ фиг 4, который прерывается в моменты возникновения импульсов в коллекторе.
За током Iи импульса фиг 4 появляется "ток утечки" ,"рассасывания"(оба термина означают одно и то же) индицирующий состояние при котором Uк уменьшилось, а Uб фиг 3 осталось на прежнем уровне. В дальнейшем это периодически повторяющийся процесс который с увеличением Uпит действует с нарастающей интенсивностью.
Объяснение такое. Появление тока в кристалле вызванное инжекцией эмиттера прерывается с переходом Uи к 0В. Свободные носители выносятся через коллектор и Uк = Uпит - E. В кристалле транзистора возникает перепад напряжений на коллекторе 0В на базе 0.7В на эмиттере >0.7В, и по этому ток базы имеет отрицательный знак. Так продолжается до тех пор пока все носители не будут вынесены через коллектор и кристалл на некоторый временной интервал станет обладать сопротивление равным бесконечности, что в свою очередь вызовет возврат магнитных моментов в исходное состояние, которое отражается в виде импульсов напряжения в конце каждого периода.
а) Ток базы - это перенос избыточных носителей из области эмиттера в серединную часть кристалла транзистора через базовую индуктивность.
д) Импульсы на базе или коллекторе, измеренные относительно плюса или минуса источника питания, одинаковы по знаку потому, что они измеряются относительно направления вызвавшего их тока.
Все это можно повторить со смещением в базе от источника питания 0.6В.На коллекторе меняется напряжение с 0.3В1.3В и 11.3В и получим такой результат.

Такой метод возбуждения качер процесса позволяет сочетать любые транзисторы с любым сочетанием индуктивностей при большом диапазоне напряжения питания. При этом следует соблюдать правило положительной обратной связи. Начала базовой катушки находится на базе, начало коллекторной катушки всегда находится на источнике питания.
Качер процесс удается реализовать на полевых, биполярных транзисторах, и на радиолампах.

Качером следует считать устройство в котором происходят чередования соединения и разрыва электрической цепи в каждом отдельном периоде, без входа во всеми используемый стационарный режим.
С индуктивной нагрузкой в обычном случае в одном интервале этого сделать не удается. Вот что получается, например, в ламповом варианте.

С транзистором будет все то же самое, но сложнее объяснять. Получить новый разрыв цепи, в данном случае, можно только повторив два события- открытие и закрытие лампы.
Качер реализуется в любых обычных схемах с ОБ,ОЭ,ОК, и в экзотических. Вот пример экзотической схемы.

Эта схема работает от 0.7В и создает 40В импульсы, которыми можно заряжать конденсаторы и аккумуляторы.

На вопрос «Зачем все это»? Ответ - это новый способ передачи информации, через механический поворот магнитных моментов атомов (известны способы - звук, свет, электрическая цепь, электромагнитная волна). Это абсолютный датчик. Это трансформатор постоянного тока.
Существует устойчивое мнение - качер это трансформатор Тесла в котором роль конденсатора выполняет источник питания, а роль разрядника выполняет кристалл транзистораКачер - трансформатор Тесла непрерывного действия реализующий передачу энергии по одному проводу, создающий излучение не являющееся не электрическим не магнитным не гравитационным.

В интернете под словами «качер Бровина» подразумевается единственная схема.

Ее используют как источник высоковольтного напряжения. Генератор Тесла-Бровин-Маг. Маг - это ник в интернете.

ГТБМ судя по описаниям и показам может нить лампы накаливания засветить в нескольких отдельных точках. ЛДСзасветиь в свободном состоянии. Разложить воду на составляющие, и ее можно поджечь. Ток с ГТБМ проходит через любые изоляторы. Мощность измеренная на выходе, выше чем на входе, т.е. КПД больше 100%.

Из многочисленных опытов(например, светодиод светится подключенный за одну ножку) следует, что схема вбирает в себя дополнительную энергию из окружающего пространства, пока не понятно почему.

Трансформаторные свойства качера позволяют создать абсолютный датчик преобразующий неэлектрические величины метры градусы в Вольты, Амперы, Герцы напрямую без преобразований.

С такой схемы питающейся от 4В, во вторичной цепи можно получить 20В, 2мА, при удалении одной катушки от другой на 15 - 30 мм. Катушки могут быть любых размеров от микрон до метров.

С такой схемы питающейся от 4В, во вторичной цепи можно получить 20В, 2мА, при удалении одной катушки от другой на 15 - 30 мм. Катушки могут быть любых размеров от микрон до метров.

Трансформаторные свойства качеров позволяют гальванически развязать управляющие на 5В цепи с управляемыми на 220В. Выходной сигнал позволяет управлять тиристором и транзистором в трансформаторной связи.

Качер улучшает свойства светодиодов - они меньше греются, не деградируют, не требуют разделения резисторами.

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник: Пищулин Андрей Александрович
  • Руководитель: Трунтаева Светлана Юрьевна

Введение

Мы в своей жизни хоть раз, но слышим по телевизору или в интернете о великом гении Николе Тесле и его катушке, которая может передавать электричество по воздуху. Но никто не задумывался, что в домашних условия можно собрать аналогичное устройство под названием -Качер Бровина. В своей работе я хочу показать, как можно пользоваться электроприборами не подключенными к сети, и докажу, что это можно сделать в домашних условиях без особых затрат.

Актуальность темы обусловлена тем, что проблема нахождения чистой энергии в XXI век стоит остро. В современном мире человечество нуждается в электроэнергии каждый день. Она нужна как большим предприятиям, так и в быту. На ее выработку тратится много средств. И поэтому счета за электроэнергию растут каждый год.

Объект исследования: физическое явление по бесконтактной передаче энергии.

Предмет исследования: прибор, который способен передать электричество без проводов.

Гипотеза: Качер Бровина можно собрать в домашних условиях с минимальными затратами.

Цель: изготовить действующую модель качера Бровина и рассмотреть возможности еѐ практического применения.

Задачи:

  • изучить справочную и научную литературу по данной теме;
  • рассмотреть устройство, принцип действия и применение качера Бровина;
  • создать действующую модель качера Бровина;
  • проанализировать полученные знания по данной теме.

Методы исследования:

  • работа с методической литературой
  • сравнительный анализ
  • наблюдение
  • эксперимент

Глава I. Теоретическая часть

1.1. Устройство и принцип работы качер Бровина

Качер Бровина был изобретен в 1987 году советским радиоинженером Владимиром Ильичом Бровиным в качестве элемента электромагнитного компаса. Инженер Бровин В.И. образование высшее – окончил Московский институт электронной техники в 1972 году. В 1987 г. обнаружил несоответствия общепринятым знаниям в работе электронной схемы созданного им компаса и стал их изучать. Соорудил множество изобретений на дому. Одно из них – Качер Бровина.

Давайте рассмотрим более подробно, что же это за прибор. Качер Бровина –это разновидность генератора, собранного на одном транзисторе и работающего, со слов изобретателя, в нештатном режиме. Прибор демонстрирует таинственные свойства, которые восходят к исследованиям Николы Тесла. Они не вписываются ни в одну из современных теорий электромагнетизма. По всей видимости, качер Бровина представляет собой своеобразный полупроводниковый разрядник, в котором разряд электрического тока проходит в кристаллической основе транзистора, минуя стадию образования электрической дуги (плазмы). Самое интересное в работе устройства -это то, что после пробоя кристалл транзистора полностью восстанавливается. Это объясняется тем, что в основе работы прибора используется обратимый лавинный пробой, в отличие от теплового, который для полупроводника является необратимым. Однако в качестве доказательства данного режима работы транзистора приводят только косвенные утверждения. Никто, кроме самого изобретателя, работу транзистора в описываемом приборе детально не исследовал. Так что это всего лишь предположения самого Бровина. Так, например, для подтверждения «качерного» режима работы устройства изобретатель приводит следующий факт: дескать, независимо от того, какой полярностью к прибору подключить осциллограф, полярность импульсов, показываемая им, будет всегда положительная.

Может, качер – это разновидность блокинг-генератора? Существует и такая версия. Ведь электрическая схема прибора сильно напоминает генератор электрических импульсов. Тем не менее автор изобретения подчеркивает, что у его устройства существует неочевидное отличие от предлагаемых схем. Он дает альтернативное объяснение протеканию физических процессов внутри транзистора. В блокинг-генераторе полупроводник периодически открывается в результате протекания электрического тока через катушку обратной связи базовой цепи. В качере транзистор так называемым неочевидным способом должен быть постояннозакрыт (т. к. создание электродвижущей силы в подсоединенной к базовой цепи полупроводника катушке обратной связи все равно способно его открыть). При этом ток, образованный накоплением электрических зарядов в базовой зоне для дальнейшего разряда, в момент превышения порогового значения напряжения создает лавинный пробой. Тем не менее транзисторы, используемые Бровиным, не предназначены для функционирования в лавинном режиме. Для этого спроектирован специальный ряд полупроводников. По утверждению изобретателя, можно использовать не только биполярные транзисторы, но и полевые, а также радиолампы, несмотря на то что они имеют принципиально разную физику работы. Это заставляет акцентировать внимание не на исследованиях самого транзистора в качере, а на специфическом импульсном режиме работы всей схемы. По сути, этими исследованиями и занимался Никола Тесла.

Качер Бровина является оригинальным вариантом генератора электромагнитных колебаний. Его можно собрать на различных активных радиоэлементах. В настоящий момент при его сборке используют полевые или биполярные транзисторы, реже –радиолампы (триоды и пентоды). Качер –это качатель реактивностей, как сам расшифровал эту аббревиатуру автор изобретения Владимир Ильич Бровин. Качер Бровина питается от модифицированного сетевого адаптера 12 В, 2 А, потребляет 20 Вт. Он преобразует электрический сигнал в поле частотой 1 МГц с эффективностью 90%. Одной из деталей данного устройства является пластиковая труба 80х200 мм. На нее намотаны первичные и вторичные обмотки резонатора. Вся электронная часть устройства размещается в середине этой трубы. Данная схема полностью стабильна, она может работать сотни часов без перерыва. Качер Бровина с самозапиткой интересен тем, что способен зажигать не подключенные неоновые лампы на расстоянии до 70 см.

1.2. Области применения

Широкое практическое применение новых устройств и изделий, функционирующих на основе этого нового физического явления, позволит получить весьма значительный экономический и научно-технический эффект в различных сферах и областях человеческой деятельности.

Рассмотрим области применения данного устройства:

1. Новые реле и магнитные пускатели, построенные на основе широкого использования качер-технологии:

  • может привести к снижению энергозатрат и повышению эффективности производства в целом, что в совокупности позволит получить в экономике страны весьма существенный экономический эффект;

2. Устройства, засвечивающие люминесцентные лампы (лампы дневного света) не от 220 В, как сейчас, а применяя изделия КАЧЕР-технологии, от напряжения питания от 5 до 10 В:

  • это позволит существенно снизить уровень пожаро и взрывоопасности

3. Устройства, обеспечивающие возможность не последовательного (используемого в настоящее время), а параллельного соединения отдельных элементов солнечных батарей:

  • позволят значительно повысить надежность, долговечность и эффективность их работы, а также получить значительный экономический эффект от их применения;

4. Устройства индуктивной передачи управляющей информации и энергии между различными светофорами, расположенными по разные стороны перекрестка и входящими в состав одного светофорного объекта (без использования применяемых в настоящее время для этого электрических проводов, с большими трудозатратами на их прокладку):

  • позволят сэкономить электроэнергию и затраты на нее.

1.3. Отрицательное воздействие

Несмотря на положительные моменты использования данного устройства, нельзя не отметить его отрицательного воздействия. Выполняя данную практическую работу, я обратил внимание на то, что из за сильного электромагнитного поля, созданного вблизи качера, из строя выходят сотовые телефоны, фотоаппарат, планшет. И здесь я задумался о том, что помимо положительных моментов, данный прибор оказывает отрицательное воздействие, в том числе на организм человека. Прочитав литературу по данному вопросу, я выяснил, что сильное электромагнитное поле оказывает негативное влияние на нервную систему человека. Длительное нахождение возле работающего прибора вызывает головную боль, и при близком контакте несильную ноющая боль в мышцах рук. Помимо этого, как выяснилось, качер может выделять озон, это мы можем ощутить по соответственному запаху.

Так же не стоит трогать руками разряды, из-за высокой частоты, может остаться небольшой ожог на коже. Таким образом, можно сделать вывод, о том, что при работе с данным прибором необходимо соблюдать правила по технике безопасности:

  1. Не пробуйте трогать руками разряды. Боль, если и будет, то несильная, но ожог вам обеспечен.
  2. Не подпускайте к устройству домашних животных.
  3. Не подносите к устройству мобильные телефоны и другую электронику.
  4. Не стоит находиться длительное время рядом с включенным прибором.

Глава II. Практическая часть

2.1. Сборка установки качера Бровин

Рассмотрим этапы сборки данного прибора в домашних условиях.

Базовые элементы Качера:

  1. катушка индуктивности (вторичная обмотка);
  2. индуктор (первичная обмотка);
  3. плата.
  4. корпус

Схема, которой я руководствовался при сборке, выглядит следующим образом:


Детали установки:

  1. Полихлорвиниловая (ПВХ) труба диаметром не меньше 25 мм и длиной 30 см(от этого будет зависеть дальность свечения лампочек). Я использовал трубу диаметром около 55 мм.
  2. Для изготовления вторичной обмотки качера я использовал медную проволоку, покрытую двойным слоем лака и диаметром 0,20 мм. Её следует намотать на трубу, не менее 1500 витков. (на моем экземпляре качера намотано около 2000 витков.) Через каждые несколько сантиметров я наносил на свежие витки клей, иначе обмотка может сбиться и перепутаться.
  3. Для изготовления первичной обмотки мне потребовался медный провод диаметром 0,5 см, его надо намотать вокруг вторичной катушки. Необходимо сделать около 4 витков. Все обмотки наматываем в одну сторону! Устанавливаем и закрепляем трубу с обмоткой на фанерке или доске, первичную обмотку растягиваем на 1/3 вторичной. Обмотки не должны соприкасаться! Потом вплавляем в трубу сверху металлическую проволоку, размером со швейную иглу и припаиваем к ней конец обмотки. Далее прикручиваем к платформе рядом с катушками радиатор для транзистора, промазываем основание теплопроводной пастой и прикручиваем транзистор к радиатору металлической панелькой.

Для изготовления платы мне понадобились следующие радиодетали:

  1. дроссель,
  2. конденсатор неполярный (1000 v 3000 μ F),
  3. 2 резистора (2,2 кОм и 150 Ом),
  4. транзистор NPN, чем мощнее, тем лучше (их можно найти в обычном блоке питания ПК или на плате старых ламповых телевизоров).

Все монтируется, как показано на схеме (рис. 1). Припаиваем провода питания.


Данное устройство необходимо подключить к блоку питания с напряжением от 12 до 38 v, который я тоже сконструировал самостоятельно (рис. 3)


Проверка качера осуществляется поднесением люминесцентной лампочки к вторичной обмотке, при правильном соединении она загорится. При касании вторичной обмотки металлическим предметом между ними будет разряд. Если качер не работает, то нужно проверить правильность сборки схемы или попробовать поменять концы первичной обмотки.

2.2. Эффекты, наблюдаемые при работе качера Бровина

Рассмотрим эффекты, наблюдаемые при работе Качера Бровина, который я сконструировал в домашних условиях.

  1. Поднесем лампу дневного света к вторичной обмотке, мы видим, что она загорается. (рис. 4) Если поднести к качеру газоразрядную лампу, то она тоже начинает светиться. (рис. 5) Такой же эффект наблюдается и с другими подобными лампами. Так же в обычной лампе накаливания можно увидеть так называемый тлеющий разряд. (рис. 6)




  1. Во время работы качер создаѐт красивые эффекты, связанные с образованием различных видов газовых разрядов – совокупность процессов, возникающих при протекании электрического тока через вещество, находящееся в газообразном состоянии. Разряды качера Бровина:
  • Стример (от англ. Streamer) - тускло светящиеся тонкие разветвлѐнные каналы, которые содержат ионизированные атомы газа и отщеплѐнные от них свободные электроны. Стример - видимая ионизация воздуха (свечение ионов), создаваемая ВВ – полем Качера. (рис. 7)


  • Дуговой разряд- образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлѐнный предмет, между ним и терминалом может загореться дуга. Иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние. (рис. 8)


Заключение

Качер Бровина – оригинальный вариант генератора электромагнитных колебаний. В своей работе я доказал, что в домашних условиях можно изготовить действующую модель качера, а также рассмотрел возможности еѐ практического применения. Хочу отметить, что моя работа в этом направлении не закончена. В перспективе я хочу сделать качер Бровина с аудиомодуляцией. Для этого нужно немного усложнить схему, добавив два резистора и транзистор. (рис. 9) Тем самым мы сможем по цепи питания качера проигрывать музыку. На практике это выглядит красиво и интересно.


В результате проведѐнных в данной работе исследований, можно сделать вывод о том, что качер Бровина, является простым в изготовлении и настройке прибором. С помощью которого можно продемонстрировать множество красивых и эффектных экспериментов. Во время работы катушки мы наблюдали два типа разрядов.

Анализируя все выше сказанное можно говорить о том, что Качер Бровина может быть с успехом использован в альтернативной энергетике, например, в устройствах получения бесплатной электроэнергии с использованием постоянных магнитов.

В заключение необходимо подчеркнуть следующее: создание новых технологий на основе описанного физического явления может дать России весьма существенные преимущества по отношению к другим странам. Поскольку, проведя в ближайшее время все необходимые исследования этого физического явления и разработав широкую гамму новых устройств и изделий, функционирующих на его основе и предназначенных для широкого практического применения в различных областях и сферах человеческой деятельности, Россия может осуществить новый качественный скачок в своем дальнейшем технологическом развитии. Внедрение российских ноу-хау кардинально изменит всю инфраструктуру энергетики и социума в целом – когда неожиданно откроется и экспериментально подтвердится новый способ получения энергии.


Качер Бровина - это оригинальный вариант генератора электромагнитных колебаний, который может быть собран на различных активных элементах. В настоящий момент чаще всего при его постройке используют биполярные или полевые транзисторы, несколько реже - радиолампы, причем как триоды так и пентоды. Данный прибор был изобретен советским инженером Владимиром Ильичом Бровиным в 1987 г в качестве части электромагнитного компаса его конструкции.

Бровин:

В 1987 г. я решил спроектировать компас, позволяющий определять стороны света, используя при этом не зрение, а слух. Я представлял себе, что это должен быть генератор звуковой частоты, который изменяет тон в соответствии с его расположением относительно магнитного поля Земли. В качестве генератора звуковой частоты был использован блокинг генератор, собранный по классической схеме, но с цепью обратной связи, где в качестве сердечника индуктивности использовалось аморфное железо, которое изменяет свою магнитную проницаемость при величинах напряженности магнитного поля, соизмеримых с магнитным полем Земли.

Звуковой компас работал при изменении ориентации, как и было задумано. Частота следования импульсов менялась в пять раз при изменении ориентации.

Анализ свойств полученной схемы выявил много несоответствий в ее работе общепринятым понятиям. Оказалось, что сигналы на электродах транзистора, измеренные на осциллографе относительно как положительного, так и отрицательного полюсов источника питания, имели одинаковую полярность (транзисторы npn имели положительную полярность сигнала на коллекторе, pnp отрицательную). Индуктивность, находящаяся в коллекторной цепи имела сопротивление близкое к нулю. Генератор продолжал работать при приближении к сердечнику сильного постоянного магнита, который насыщает сердечник, и блокинг процесс должен был бы прекратиться из-за отсутствия трансформации в цепи обратной связи. В сердечнике никаким образом не выделялся гистерезис, мне не удалось выявить его по фигурам Лиссажу. Амплитуда сигнала на коллекторе, оказывалась в пять и более раз выше напряжения источника питания.

Качером (от «качатель реактивностей») обычно называют несложное забавное устройство, изобретённое неким Бровиным, и якобы выдающее больше энергии, чем потребляет по питанию. По факту представляет собой весьма странно сделанный автогенератор на одном транзисторе, с главным достоинством в виде феноменальной простоты конструкции, являясь чуть ли не наиболее простым HV-устройством из известных

Качер - возможности и способы применения

Высокочастотный демонстрационный генератор высокочастотного поля, Качер, он же автогенераторная однотактная Катушка Тесла.
Простая и надёжная схема потребляет от сети ~20Вт (модифицированный сетевой адаптер 12В 2А в комплекте), и преобразует их в поле частотой около 1 МГц (а также в небольшой стример) с эффективностью порядка 90%. Качер представляет собой чёрную пластиковую трубу размером ~80х200 мм, закрытую с обеих сторон, имеющую пружинку в качестве разрядного терминала и разъём для питания. Вся электронная часть упрятана внутрь трубы. Первичные и вторичные обмотки резонатора намотаны на внешней поверхности трубы. Схема полностью стабильна и может работать десятками и сотнями часов без перерывов.
Устройство способно зажигать ни к чему не подключенные энергосберегающие и неоновые лампочки на расстоянии до 70 см, и многое другое, и является замечательным демонстрационным прибором для любой школьной или университетской лаборатории, равно как и настольным прибором для развлечения гостей или удивительным устройством для фокусов для тех, кто не равнодушен к подобным научным игрушкам.

Как расплавить медь при помощи электрической дуги и другие эксперименты с качером Бровина

ПОЧЕМУ не работает «качер Бровина»?

Почему же может не работать такой простой генератор и как его настроить? Для надежной работы генератора необходимо соблюсти ряд простых требований к элементам схемы.

1. Катушка должна быть длинной и многовитковой. Намотка должна быть плотной. Короткая маловитковая катушка с редко намотанными витками резонирует на чрезмерно высоких частотах. К такому же результату приводят пробелы в сплошной намотке, получающиеся, например, при спайке порванного при намотке провода и наличии большого промежутка между соседними витками в этом месте.

2. Транзистор должен быть достаточно высокочастотным для генерации на частоте колебательного контура. Обычно используемые транзисторы КТ805 с разными буквами имеют граничную частоту около 20 МГц, КТ903 - 120 МГц, КТ902 - 35 МГц, КТ819 - 3 МГц. При коротких катушках не все транзисторы могут генерировать на требуемой частоте. Хорошие результаты должны давать высокочастотные (но дорогие) транзисторы КТ921А с граничной частотой до 300 МГц.

3. Нужно правильно подобрать режим транзистора по постоянному току. Ток через транзистор очень сильно и нелинейно зависит от напряжения между базой и эмиттером транзистора. При значении этого напряжения менее 0,5 В транзистор ток не проводит и еще не усиливает и не генерирует. При значении 0,7-1,0 В ток может резко меняться от очень маленького значения до 3-5 ампер, транзистор усиливает и генерирует. При напряжении 1,5 В через транзистор идет максимально возможный ток, транзистор уже не усиливает и не генерирует.

Установить нужный ток 0,5-1,5 ампера можно с помощью резисторов. Для этого при 12-15-вольтовом питании проще всего впаять нижний резистор постоянного номинала 150-300 Ом, а вместо верхнего впаять цепочку из резистора 1 кОм и последовательно включенного с ним переменного резистора на 10 кОм. Используются один из крайних и средний (подвижный) выводы. В начальном положении расстояние между подвижным и крайним выводами (а, значит, и сопротивление между ними) должно быть максимальным. В разрыв одного из проводов питания нужно включить амперметр на 2-10 ампер и, поворотом ручки резистора выставить ток 0,5-1,5 ампера. Если такого амперметра нет, то нужно отслеживать появление генерации с помощью неоновой или люминесцентной ламп, расположенных близко от катушки. Если генерации нет, то нужно поменять местами выводы первичной обмотки, и повторить настройку.

Ток через транзистор сильно зависит от его нагрева при работе генератора. При длительной работе транзистор может стать неуправляемым от перегрева и выйти из строя (перегореть). Для уменьшения этого эффекта можно впаять в эмиттерную цепь резисторноминалом 1 Ом мощностью 2 Вт.

4. Для надежной генерации, не зависящей от параметров источника питания, в схеме между плюсом и минусом должна быть емкостная развязка, желательно из двух параллельно включенных конденсаторов: один электролитический емкостью примерно 1000 мкФ, выдерживающий с запасом напряжение источника питания, другой бумажный или керамический емкостью 0,1-0,5 мкФ с теми же требованиями к рабочему напряжению. Электролитический конденсатор обычно имеется внутриисточника питания, поэтому его можно не ставить.

Качер Бровина


Качер Бровина - полупроводниковый прибор, транзистор, разрядник, в котором электрический разряд тока проходит в кристалле транзистора без образования плазмы (электрической дуги). При этом кристалл транзистора после его пробоя полностью восстанавливается (т.к. это обратимый лавинный пробой, в отличие от необратимого для полупроводника теплового пробоя).

Качер является разновидностью известной (с 60х гг XX века) схемы так называемого блокинг-генератора электрических импульсов. Однако В.И. Бровин подчёркивает неочевидное отличие качера от блокинг-генератора, предлагая альтернативное объяснение протекания физических законов внутри транзистора: в блокинг-генераторе транзистор периодически открывается протеканием тока из катушки обратной связи в базовой цепи транзистора; в качере транзистор неочевидным способом (т.к. создание ЭДС в подсоединённой к базе транзистора катушке обратной связи теоретически способно открыть его) должен быть постоянно закрыт, а ток образован накапливанием электрических зарядов в объемном пространстве базы транзистора для дальнейшего разряда при превышении некоего порогового напряжения (лавинный пробой).

Применение

В настоящее время качер применяется вместо плазменного разрядника для создании разрядов тока без электрической дуги в экспериментальных устройствах типа высоковольтного трансформатора Теслы (это обусловлено тем, что по своей сути возникающая в разряднике дуга сама по себе служит широкополосным генератором электрических колебаний, и это было единственное устройство для создания высокочастотных электрических импульсов с частотой до 1 МГц, доступное во времена Теслы). На своей странице в Интернет Бровин также утверждает о создании им на основе качера коммерческих измерительных устройств, позволяющих определять абсолютное расстояние между генератором (качером) и датчиком его излучения.

На этом принципе созданы преобразователи электрического тока в солитоны электрического тока (?.. определение солитонов электрического тока).

Примечание: приведённое описание устройства и принцип его работы видимо (зрительно, иллюзорно) противоречат официальной науке, причём по утверждению самого В.И. Бровина (который в настоящее время открыто демонстрирует эти противоречия и просит всех желающих разобраться с парадоксами измерения параметров его устройства). Позиция открытости по данному вопросу гарантирует отсутствие стремления выдать своё изобретение (имеющее непонятное объяснение) за что-то другое (вечный двигатель).

Статьи Бровина в Интернете, связанные с применением этого устройства, с точки зрения официальной науки пока классифицируются как замаскированные попытки объяснить работу устройства как действие разновидности вечного двигателя.

Важно (для развития науки): описание эффектов действия качера на окружающее пространство может оказаться способом поворота спинов атомов окружающего вещества (на что также указывает сам В.И. Бровин в эксперименте с заключением качера в стеклянную банку и откачиванием воздуха для понижения давления в ней). Никаких сверхединичных эффектов, которые позволили бы классифицировать качер как вечный двигатель, в результате проверки самого качера (по результатам видео множественных экспериментов с самим качером, а не статей Бровина о нём) найдено не было, за исключением известных реальных опытов по передаче энергии по одному проводу (впервые демонстрировавшихся ещё самим Николой Теслой). Возможное неверное показание электрических приборов учёта мощности объясняется импульсным, сильно негармоническим характером протекания электрического тока в цепях потребления энергии качером, тогда как часто используемые приборы типа тестеров рассчитаны либо на постоянный, либо на гармонический (синусоидальный) ток.